Application of DNS and LES to Dispersed Two-Phase Turbulent Flows

نویسندگان

  • Kyle D. Squires
  • Olivier Simonin
چکیده

An overview and examples of the application of Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) to prediction and the scientific study of dispersed, turbulent two-phase flows is presented. This contribution focuses on Eulerian-Lagrangian treatments in which dispersed phase properties are obtained from discrete particle trajectories. The scope of the approaches considered are on systems in which the ensemble comprising the particulate phase is large enough that direct resolution of the flow in the vicinity of each particle is not feasible and, consequently, models of particle dynamics must be imposed. The advantages and limitations of each technique are first considered, representative applications of both DNS and LES to “building block” flows are then summarized: statistically stationary particle-laden isotropic turbulence and fully-developed turbulent channel flow. In both flows, the detailed descriptions possible using DNS and LES enable in-depth evaluations of statistical and structural features. The specific properties considered including the role of inter-particle collisions in turbulent channel flow and more recent efforts focused on exploration and analysis of the spatial structure of the particle velocity field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusion-inertia Model for Two-phase Turbulent Flows and its Implementation into OpenFOAM

The existing strategies of modelling turbulent two-phase flows can be subdivided into two groups depending on the Lagrangian tracking and Eulerian continuum approaches for handling the particulate phase. In the framework of the Lagrangian method, the particles are assumed to encounter a series of turbulent eddies randomly, and the macroscopic particle properties are determined by solving stocha...

متن کامل

Point-Particle DNS and LES of Particle-Laden Turbulent flow - a state-of-the-art review

Particle-laden or droplet-laden turbulent flows occur in many industrial applications and in natural phenomena. Knowledge about the properties of these flows can help to improve the design of unit operations in industry and to predict for instance the occurrence of rain showers. This knowledge can be obtained from experimental research and from numerical simulations. In this paper a review is g...

متن کامل

Active Control of Turbulent Channel Flows Based on Large Eddy Simulation

Advances in high-performance computing and Large-Eddy Simulation (LES) have made it possible to obtain accurate solutions of complex, turbulent flows at moderate Reynolds numbers. With these advances, computational modeling of turbulent flows in order to develop, evaluate, and optimize active control strategies is feasible. In this paper, we present approaches to numerical modeling of oppositio...

متن کامل

Study of the turbulence modulation in particle-laden flows using LES

One of the most interesting problems in fluid dynamics is the prediction of particleladen turbulent flows. These flows are as diverse as pollutant dispersion in the atmosphere and contaminant transport in industrial applications. An issue of primary importance for moderately dense suspensions concerns how particles affect the turbulent flow itself, the so-called two-way coupling. It is known th...

متن کامل

On the Use of Les with a Dynamic Subgrid-scale Model for Optimal Control of Wall Bounded Turbulence

This paper presents techniques for optimal control of turbulent flows based on the dynamic subgrid-scale LES model. This control scheme has been implemented using a finite time-window approach where the flow sensitivity is computed from the adjoint LES equations. LES results for optimal control of terminal turbulent kinetic energy are compared to Direct Numerical Simulation (DNS) under similar ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002